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ABSTRACT

k' " The asymptotic zero-crossing rate (ZCR) of the general first and

second order autoregressive processes is investigated. When the

EI associated characteris&ic polynomial has a unit root eie, 0<8<m, the
ZCR converges in mean sqﬁéré to 6/w, and the rate of coﬁvégéénce is very

-
fast regardless of the noise level. [t is conjectured that in higher

order autoregressive processes multiple unit roots can be determined by

the ZCR of the filtered processes. An indication to this effect is given.
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Convergence of the Zero-Crossing Rate of
Autoregressive Processes and its Link
to Unit Roots

~ARL

1. Introduction

In this paper we investigate the convergence of the zero-crossing rate
(ZCR) of nonstationary first and second order autoregressive processes. In
addition to other parameters, of special concern to us is the link between
the unit roots of AR(2) processes and their ZCR. Our main result states
that the ZCR of a nonstationary AR(2) whose characteristic equation has a

e, 0 < 6 < m, converges to 6/n in quadratic mean. It seems

unit root ei
that the convergence is very fast and is essentially identical to the case
of a pure sinusoid regardless of the magnitude of the additive noise com-
ponent. At present it is not clear how to extend this result to the general
nonstationary AR(p) with unit roots, but it is conjectured that the ZCR of
the filtered processes may be the required remedy. An indication of this
fact will be illustrated at the end.

Let {Xn} be a Gaussian process with zero mean and where

n=0,+1,+#2,..., and let {xn} be the correspondina clipped process
1, Xn >0
Xp © s n=0,+1,+£2,...

The quantity

N 2
DN(Y) = _Z] (Xj - Xj-])
J_
? is called the number of zero-crossings of the time series XO’X1’X2’
X DN(X)/N is the corresponding ZCR. When {X} follows a first order R
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autoregressive model

Xgzoakey tep afh {
then under some conditions
-1
- cos a, Ja] <1
1.9.m %DN(X) -
N-oo ] -1 «a
- €0s o] la] 2 1.

The complete statement is given in Theorem 2.1.
Let B denote the backward shift operator, and consider the nonstationary

AR(2) process with two unit roots
(1 - e"%)(1 - e %)x, -
Then under appropriate conditions

. )] ]
1.i.m gD, (¥) = =.
N N"N m

A more complete statement is given in Theorem 3.1.

The paper is organized as follows. After some preliminaries, section 2
treats the first order case while section 3 deals with the second order case.
The method of proof is the same in both cases. Section 4 deals with unit

roots.

1.1 Preliminaries and motivation

For a better exposition it is helpful to expound on some key observa-
tions.

Throughout the paper we assume that {Xt}, t = 0,+1,+2,..., is a zero

mean Gaussian process with correlation function
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W

Extxt+k

o t) = ———1 .
KT e, )

It turns out that our processes become asymptotically stationary by

satisfying the condition

Tim pk(t) =P T Py k = 0,1,2,... . (1.1)

{0

k

Now, if a = (al,...,ak)| ¢ R°, then we have

1 Py o Pkl
2’ A T { 35%14 }
; : : te Lt ‘ (EXgyy)”
Pr-1 Pk-2 !
and therefore the matrix (pmi _mj), i,j=1,...,k, is always nonnegative

definite and there exists a stationary Gaussian process {Yt} such that

EY, =0, EYY ., =pn k=012, .

This fact is fundamental to our development.

Another useful fact is the formula [1, p. 34]
T RS T
EXjXi41 =3+ 75 510 py(3). (1.2)

It follows that when (1.1) holds we have

1 1 = .l -1
LEWEDN(X) 2 cos py - (1.3)

This is the 1imiting expected ZCR. It turns out that the ZCR itself

achieves this limit in quadratic mean when (1.1) holds.
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The motivation for using the ZCR in determining unit roots in non-
stationary autoregressive processes springs out from the following fact.
A second order autoregressive Gaussian process with two unit roots e'®

(they are a conjugate pair) has the form

- X +

t-2 Ct (1.4)

Xy = 2 cos 8 X, ,

where {et} is Gaussian white noise. Assume for a moment that ey = 0
with probability one. Then {Xt} is a pure sinusoid with frequency @ and

this implies that with probability one
L T
|e-N DN(X)ISN,
or that
im L -8
l&l;w NDN(X) =
The surprising fact is that thijs limit remains true even in the presence
of €, in (1.4), and in fact regardless of the magnitude of ey, that is,
regardless of the size of Var(et). Moreover, the rate of convergence of

the ZCR to o/n is fast, Evidently, these are robustness properties of

the zero-crossing rate.




2. The ZCR of a general AR(1)
Suppose {xt} follows the AR(1) model

X, = aX t=0,¢1,..., a#?0 (2.1)

t -1t €

t’

where {et) is Gaussian white noise with mean 0 and variance OS' Let
X0 = £ be an initial value independent of {et} with E£ = 0, ECZ = 02.

The solution of (2.1) depends on whether t >1 or t < -1 and is given

by

X, = atg + at-lel + ...+ acy + €4s t>1 (2.2)

_ .t t t+1 -1
Xt =af-a €g =@ €] T .- T @ Eiin t<-1. (2.3)

Note that {Xt} is not a stationary process but that (2.1) has a stationary
solution when |a] # 1. For s>1, t2>1 define

(1-a%)d® - o

2
¢,(t,s) = $
1 (] -az)oz + (a"2(t+5) - 1);3

a-2(t+s)02

P

(1 -az)o2 + (a

vy(tss) (%45 Tl
€

It follows that uniformly in s and as t + =

0, Ja] <1
¢1(t95) -
1, Ja] > 1
and
1, [al <1
v, (t,s) =~
0, o] > 1.
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ps(t) can be expressed conveniently by

po(t) = {o(t,5) + aZ%y (t,5)}" e lal £
02 + to2 &
={“2——-——€2} ‘o, la] = 1.
o + (t+s)oe

Similarly, for t < -1, s < -1 define

( ) o (1"0 ) - Oz -2
t, =
bpltss “(1-a72) + a f(a 2(tHs) l)oi
22
) a OC
wz(tgs) = ;zrfis)oz(l _a-Z) + a’Z(l _a21t¥§))05

Then again uniformly in s and as t + -e

1, la] <1
¢2(t,S) -+

0, Jaf >1
and
0, Jaf <1
wz(tas) +
1, Ja] > 1.

The correlation function becomes

pg(t) = {oy(tis) + a®uy(t,5))% (25, a| £ 1

- (t+s)oe

We therefore have

02 - to2 E
£ S
7___.—__._2_ -a N lal - 1_
o

i




Lemma 2.1. Assume that {Xt} follows the AR(1) model (2.1) where XO

is independent of the Gaussian white noise {ct]. Then

o’ ,  |a] <l
lim ps(t) = » uniformly in s > 1.
i (2%, lal>1
]
(o)™ lal <1
1im p_s(t) = ! , uniformly in s > 1.
{+ -0 -S
o ,  Jal>1
. _ s -
1im °+s(t) = a’, la] =1.

2, 2 2

Proof. If la] <1 and (1-a")o" = o, then ¢1(t,s) =0 and
¢1(ts5) =1 and so ps(t) = o> for all t. If a] <1 and

(1-02)0? # ci we have
log(t) - a®| = [19,(t,5) + oy, (t,5)1% - |a]®).

Because ¢l(t,s) -0, wl(t,s) + 1 uniformly in s >1 as t » o,

for any ¢ > 0 we can find T1 > 0 such that whenever t > T1

2
o(tss)] < & and  Jy(t,s)] < 2.
230 2

Choose s, such that 2a = < %T' Then for t > Tps s 2 s4

lo (t) - o < e.

Since 1lim ps(t) = q°

t-+ec

for s = 1,2,...,50, we can find TO such that

f

for t > Ty we also have los(t) - ns| <e for s=1,2,...,s. Thus

ifweput T = T1 Vv T0 then whenever t > T

S

Rl




[ps(t) - azf <Ee for all s > 1.

If |a] > 1 then obviously (1 -az)o2 # og and for sufficiently large t

-2t 2
2s a ¢
la Y (t,S)l = -
! (1 -a2)027+ (@ 2(trs) lﬂzi
2
a
- >
02
aZt[(a2 -l)o2 + 051 - *5%
a
O
< 02'
aZt[(a2 -l)c2 + ogl - ~€%
a

+ 0, t-+o yniformly in s > 1.

Now

log(t) = (2% = [ (o) (tss) + azswl(t.s),)!i - 1].

|al

But since ¢1(t,s) + 1 uniformly in s >1 as t - », and since
iazswl(t,s)l + 0 also uniformly in s >1 as t -+ o, it follows that
ps(t) + (TET)S uniformly in s > 1 as t + o, This takes care of the
first part of the lemma. The <econd part can be proven in the same way,
and the third part is obviously true since we do not claim a uniform

limit for this case. o)

In order to translate Lemma 2.1 into a statement about the con-
vergence of the ZCR we shall use the fact that the process in (2.1) con-
verges in some sense to a stationary process regardless of a. Recall

that a sequence of Gaussian processes

- y(n) y(n) (n) _ - .
Xn = (X1 ,X2 seen)s EXi =0, all i > 1,

-tA_.._A.J

—JiiR A

sl b




converges in distribution to a Gaussian process

Y= (YY), EY =0, all i)

if and only if

(")x(")

mkm EY .Y for all m,k.

;12 EX m+k m

We shall say that the convergence is uniform if it is uniform in m and k.

When |a] < 1. (2.1) has a stationary solution

Y, = cht . t = 0,¢1,42,... {2.4)

and when |a| > 1 (2.1) still has a stationary solution of the form

-] -.+1
Z, = - jgoa J Erajaps £ 0stlie. (2.5)

Define a sequence of random variables {wi} by

W= (<27 x, X - N(0,1). (2,6)
|a

In accordance with (2.1), (2.4), {2.6) we further define

X = (XgXpa-on)
¥o= (X VR, X VEXD )

-<
u

/1 - a? (YO’Yl"")
W= (W)
wur discussion will focus on the relationship of the ZCR of ¥ to that

of X, ¥ and W. The idea is to show that the ZCR in ¥, converges to

that of ¥ for J|a| < 1 but it converges to that of W for J|a| > 1, and

al

Wl

a 2

-

R |
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then show that the asymptotic ZCR in !n and X are the same. Our first

step in this direction is to observe that Lemma 2.1 implies

Lemma 2.2. Assume that {ct} is Gaussian white noise and that X0 i 3
is a zero-mean normal random variable independent of {gl,cz,...}c.
Then as n » » we have

(i) If |a} <1 then ¥ converges to ¥ in distribution uniformly.
(ii) If J|a] > 1 then ¥, converges to W in distribution uniformly.

(iii) If Jla] =1 then X converges to W in distribution.

Let DN(W), DN(W) be the numbers of zero-crossings in (YO’YI""’YN)

and (wo,wl,...,wN) respectively. Because ¥ is ergodic (1.2) and (1.3)

imply that
1 1 -1
lim £ D (¥) = = cos "o a.s
Nooo NN ) T
Also, we clearly have
1 1 -1, a
‘N-DN(W’) T cos (m) a.s
Therefore by bounded convergence
1.i.mip () = L osla (2.7)
foo NN
and
. 1 1 -1, a
1.i.m D, (W) = = cos “(—). 2.8
Jom Oy = g cosTH(E) (2.8)

We will show that (2.7), (2.8) also hold true for X depending on
whether Ja|l <1 or J|al > 1. In passing we note that (2.7) was also
established in (1, ch. 5] by a different method whereby ¥ is approximated

by an M-dependent Gaussian process.

v .—-..‘.-___.M—L.J

.
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Consider first the case |a]l =1 and let M > 2 be fixed. De-
fine by

M
- 2 N
DM(XH) = J'—Z'l (Xn+j - Xn+j_1) s n>1,

the number of zero-crossings in (Xn,Xn+1,...,Xn+M) which is the same as

: 2 2
this number for (Xn//EXn s eens Xn+M//EXn+M ). Then by Lemma 2.2 X,

converges in distribution to W as n » > and for all M > 2

P -
%DM(Xn) + ;lr—cos lcx, n -+ o,

and hence, by boundedness,

%EDM(XH) -> % cos'la, N> oo,
and so
1 1 -1
LJQ-NEDN(Y) ~ COS o

where DN(Y) is the number of zero-crossings in (XO’XI”"‘XN)' Now,

since % cos la = 0 or 1 we obtain

1 1 1 -1
a NEDN(X() + 2 C0s Ta

2

1 -
la) < N—EDN(X)- %-cos

1 1 -
Eﬁ;DN(Y)— - cos

Thus

i i (x) - % cos”la, la] = 1.

Yo NN ]q

Next consider the case |a] > 1. Then again from Lemma 2.2 and (1.2)

R

.1 1 -1
lim & = 1 o 2.9
im 5 EDN(X) — cos (lal)' (2,9)
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. 1 -1, ay _ . .
But since - cos (T;T) = 0or 1 again we obtain |
|
. 1 _ 1 -1, a ]J

For the case Ja|l < 1 we have similarly

Rl

w

nmﬁst(x) T (2.11)
N—»oo

Here, however, %—cos'la is neither 0 nor 1 and we cannot use the

method employed above. To prove the mean square convergence of the ZCR

in this case we need the following additonal lemma.

Lemma 2.3. Let c be a positive constant and let ¥ = (YO’YI"") be
a 2ero mean stationary Gaussian process with correlation function P
Assume that ¥ = (XO, 1,...) is a Gaussian process with mean zero and

correlation function pk(t) which converges to p, as t -~ uniformly

in k. Then,
1.i.m %DN(\Y) = ¢
N>
implies
. 1
1.i.m = 0,(¥%) = c. (2.12)
Npreo NN

Proof. Let X; = l[xi >0]" Vi ~© l[Yi >0]" i=1,2,..., be the

sequences of indicators obtained by clipping ¥, ¥. Define

D
f(x) = 7t Sin X I*
21 1, -1 . =1 . -1
g(x,y,2) = g + g=(sin""x + sin”"y + sin""z).
Then f,g are uniformly continuous and for v > u > t > s, we obtain q

from [1, p. 34]
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Exexy = floy_g(s))
ExoXeXy = 9(py_g(s)sp,_o(s)ip,_(t)).
Also, it is known that there exists a function h such that
ExgxeXyXy = Moy g(s)sp,_o(s)sn,_o(s)io, ¢ (t)sp, 4 (t)sp,_ (u)).

Obviously h is continuous on the compact set

{(xl,...,x6): >0, lxil < 1}

and is therefore uniformly continuous there. Thus by uniform continuity

for any € > 0, there is & > 0 such that

If(Xl) - f(yl)' <€
lg(xlsxz) - g(yl’yZ)l <e

lh(Xl,...,XG) - h(yla'sys)l <€

whenever ]Xi - yil <68, i=1,...,6. Also, since pk(n) converges to p,

uniformly in k> 1 as n -+ «, we can find Ne such that
ka(n) - pk] <§ forall k>1

whenever n > No. We therefore have
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N N
2 € N 2 £ 2 N
+—'2'lE X(X.I'X] 1) Z{.l(XJ-XJ 1) “E }1\(\)] ‘\)]_1) NZ...I(\)J ’\)J 1)
€
N N
1 2 2
+ —5|E (X; =Xs_ 1) - E (vi=-v: )
EZ Ngl i M-l N§1 i ~viall
€ C
2 . R
NP N-N)lee(N-N )
N2 Ne

In the above bounding we used the fact [a-b| ¢ a v b, for a,b> 0.
Since € is arbitrary and since Ne is fixed the last two expressions can

be made arbitrarily small as N -+ e, and we proved that

lim teGo. 0 2 - e o (w)2y = 0.
i (EGo,(0) - £ D, (0)

Next, by the stationarity of Y and by hypothesis,

1 -
5 EDy(¥) =

and so, by the uniform convergence of pk(t) we also have
—]lED (%) + ¢ N+ o
N N ] b ]

and (2.12) is proved. 0
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-1,-2,... . That is,

H

Denote by ¥_the process Xt in (2.1) for t

X= (XX 5.l

1}

Also, recall the stationary solution (2.5) {Zt) z 2. We can study the
ZCR in X_ by comparing it to that of 2 following the above procedure.
In this case X_ plays the role of X while 2 plays the role of ¥. Let

Oy(¥_) be the number of zero-crossings in X_ oK poeeesXy s OF

e~

Oy(e) =

2
; (x_j x_j_l).

1

We can prove the convergence of DN(!_)/N in precisely the same way used

to prove the convergence of DN(l)/N. Collecting the above results we have

Theorem 2.1. Assume that {Xt} follows the first order autoregressive
model (2.1) where {et} is Gaussian white noise and where X, = £ is a

zero mean normal random variable independent of {ct]. Then

% cos'la . la] <1
1.i.m Lo (%)
oo N Leos™ 12, ol 21
m fa* 1 E
1 11
| 7 €os T o, la] > 1
1&mﬁvN(xr_) ‘
Leos (&), Jal <1
w la]

Evidently, the asymptotic ZCR depends on a only and is independent
of the magnitude of {st}. Figure 2.1 portrays the convergence of the Z(R
for various values of a. For a > 1 the path of the ZCR is much smoother
than the paths corresponding to |a| < 1. Our observation has been that
this path property sets apart the "stationary" from the "nonstationary"

cases.

el L.
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Figure 2.1. ZCR paths of AR(1) processes with a= (0.5,0.8,0.99,1.0,1.05).

Convergence is towards (0.333,0.205,0.045,0,0) respectively. o = 1.

(D(N)/N = Dy (X)/N)
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3. The ZCR of the general AR(2) process
Consider the second order autoregressive process {Xt} defined by

the stochastic difference equation
(1 -aB)(1 -BB)Xt Ty b= 0,+1,... (3.1)

where {Et} is Gaussian white noise with variance oz, and where X_, = ¢,
X_2 = ¢ are two initial values independent of {ct}. As before, B is
the backward shift operator. Clearly, {Xt} is not stationary but the
equation (3.1) has a stationary solution which depends on a,f. In what
follows, we will show that the asymptotic ZCR of {Xt] is determined by
a,B but is independent of the magnitude of {ct]. The method of proof is
identica) to that given in the first order case. We start off by de-
termining the asymptotic correlations of {Xt}.

The general solution of (3.1) for t > 0 is given by

t . .
< p 12 tv2 | 1 1 _ i+l 1
Xt Ao + 88 + o jZO (a 8 )Ct-j’ a?Bs oB €R
B2 sp (t2) ¢ ] ad(ie]) g er!
0. 2 2 j=0 a J Ct_J’ - B E
t+2 t sin(j+l)e
= (A cos(t+2)e + B3s1n (t+2)0 Z sin g P Etej e
a=B=pe'®, >0
where
" _ =1
Al = a-B(C BE) B, ajﬁ(ﬁﬁ -7)
. =1,
A2 T 82 a{ C
1
A3 =t By = $7n 5(5€ - ¢ sine)
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_ = _ 18 . i0 -i0
Note that the case o =8 = e corresponds to the unit roots e °, e .
Under the assumption that £,z have zero means and finite variances, we
have

(i) o #B, a,B € R}

Exf - Eplalttd 4 gplplttd E(AlBl)(“ﬁ)t+2

1 1
o2 2142 2t+2 t+1
4 _e Jl-a 2,1-8 2 _ 5 1-(ap) 2
— S a” 4 Tt - 2 S o (3.2)
(a-6)° | 1-a 1-8 1-af
_ pl 2t+4+k 2, 2t+4+k t+2, k, Kk
EX Xy, = EAJR + EB|B + E(AB ) {aB) " " (a” +87)
2
o} 2t+2 2t+2 t+l
+ € 2{(!2+k l-a — + 62+k_1-(’» > - of 1-(aB) (ak+8k) (3.3)
(a-B) 1-a 1-p 1-af
e . t+] N
where if a =1 we define (l-a ")/{l-a) = t+1.
(1) a=8 ¢€R
t .
Ex? = o2t4(enl + 2En g (t+2) + EBZ(1+2)2) + 0 T oPI(j+1)° (3.4)
t 2 272 2 € 50
+4+
EX X, = o2 RS + E(AB,) (2t +4+K) + EBS((t42)(t+2+K)
2 ¢ 25
*t o, ] a (G+1)(5 +1+k). (3.5)
30 -

When a > 1, in the 1imit as t - = of the ratio of (3.5) to (3.4) we

use the facts that

t 2
1 23 a
lim oo™+ =
tom o2 F(£42)2 550 af -1
and
t
1 2
lim y a™ =0
t+o (xzt'(t+2)2 j=1
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(111) a=B=ope'’, 8 ¢ (0,1), 0>0

EX% - p2t+4{EA§c052(t+2)e +EB§sin2(t+2)e + EAJB,sin(2t +4)6)

%t 2j
+ 7 L sin®(j+1)e o

sin"8 j=0

Extxt+k = p2t+4+k{EA§cos(t+2)e cos(t+2+k)o + EBgsin(t+2)e sin(t+2+k)8

+ EA B3sin(2t'+4-+k)e}

3

t .. . . .
5 ) sin(j+1)6 s%n(3+l+k)0 p23+k (3.7)
j=0 : sin“6

+0

Observe that

-4

I sin®(j+1)e = m
J=0
and
t
1 sin(j+1)e sin(j+l+k)e

j=0

t . . .

= 7 sinz(j+1)e cos kg + Sin 28 + sin(2t+2)6 - sin(2t+4)8 - 1 . 1o
3=0 4(1 -cos 0)

are facts used in the limit ratio of (3.7) to (3.6).
Forming the appropriate ratios of the above expressions and passing

to the 1imit as t - » we obtain the asymptotic correlation as follows.

Lemma 3.1. Assume {Xt} follows (3.1), {ct} is white noise independent

of X_1 z g, X_2 =g, EE =Ez =0, E&z,Ecz < o, Then for s >1




(1) a# B, a,B € R}
s+l 2 s+] 2
1im ps(t) =& (I'le" B (%-a ), lal <1, |8] < 1, uniformly in
to a(1-87) - 8(1-a%)
- (,—ng. 8l > lal >1 or 8] 21, la| <1
= (,—:T)S. laf > 18] 21 or Jal 21, (8] < 1.
(ii) a=8 €R!
lim p (t) = as(l + S(1'0‘2)) |la} < 1, uniformly in s > 1
o 5 e ’ g )
= (.i_ S, o 2 1.
2% ol
(111) a=B=pe'®, 8¢ (0,1), o> 0

lim p (t)
tro

Proof. The

Lemma 2.1.

20

pscos(se) +

cos(s8),

(l-pz)cos 6 5in 56 s

P

’

(1 +§?)sin 8

= 1, uniformly in s >

p < 1, uniformly in

1.

S

proof is straightforward and is similar to the one given in

The stationary solution of (3.1) in terms of a realizable moving-

average is

Y =
oy

"
t~1

"
O

given by

k+1 k+1
a - B 1
B €ior ¢ F B, o8 €R,
(k+#)a¥e, ,» o =8 ¢€R, la] <1

sin(k+1)8 k
sin 8

Define

€pp> @ B=pe , O

IC" <1, IB! <1

S

2

v

1

- ..




Lemma 3.2. Assume {Xt} follows the AR(2) model (3.1) where X_

21

Zk = Acos ke + B sin ko, k=0,1,2,... ,

where A,B are independent N{(0,1) random variables and

g \K
W, = (-illi———) X, X~ N(0,1),
[a v B]

y= 1 (Ygo¥ps--)
Y2

/£ t
2= (252....)
= (WM.
¥ = (XO’XI"' )

— 2 2

X = (x R x VT, L)

where {Xn} is the process in Lemma 3.1. The 2 process is stationary and
Gaussian with zero mean and correlation function cos{k8), k = 0,1,...

Lemma 3.1 now entails under the Gaussian assumption

1 = &
X_, 2 ¢ are two normal random variables with zero means and finite
variances independent of the Gaussian white noise {st}. Then as n + =
(1) If Jaf v |8] <1, X, converges to ¥ in distribution uniformly.
(i1) If o8 € RY, Ja| v [8] 2 1, ¥ converges in distribution to W.
(iii) If «a =§'=eie, Xn converges to 2 in distribution uniformly.

As in the first order case, the asymptotic ZCR of ¥ is the same as

that of Xh but that of Xb is the same as the asymptotic ZCR of ¥ or that

_ml

. e
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of 2 or that of W depending on «,R. Thus, we need to obtain the limit
ZCR in the latter cases.
Under the Gaussian assumption Y is ergodic. Also, for |of < 1,

8] <1, a8 €R and a=F=e0, Jp] <1

EYYerl 1 1,448 ‘
——— = 5 €0s ) !
EY 1 +uf
t
1 -1, 0t8
so that DN(Y)/N + = cos (=) a.s. as N +~ =. Therefore by bounded
n 1 +af
convergence also
i £0(¥) = 1 cosTHELE
Nooo n 1 +ap

Since 2 is a sinusoid its ZCR converges to % cos'l(cos(e)) = o/m a.s.

so that again

. 1 0
l.im 50,(2) = =.
N-reo NN m

Similarly, it is easy to see that

. 1 _ 1 -1/ av?p
1.i.m 0, (W) = - cos (————————).
N»ooNN() m la v B

The convergence of DN(Y)/N for the cases corresponding to {a| < 1,
8] <1, n,B € Rl, and a =8 =e'?, can be established by
Lemmas 2.3, 3.1, 3.2. The case a.p ¢ RY and lal v 2] > 1 1is much

simpler and follows from Lemma 3.1 which gives

lim py(t) = -2 LB
toreo la v B8]
so that
N | 1 -1{ av?§B
lim 5 ED,(¥) = = cos ( ).
oo NN m la v B




T
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But l-cos'1 (—554!15-) = 0 or 1 and this implies
" o V6]

;o 1 =1 -1f avp
]ﬁlsn7’DN(Y) 5 cos (Iu » BI).

The same method can be used to obtain the asymptotic ZCR in
¥ = (X_;,X ,,...) with the appropriate conditions on a,8. This re-

sult and the summary of the above discussion are given in

Theorem 3.1. Assume that {Xt} follows the AR(2) model (3.1) with

initial values X_; =€, X , =t that are normal random variables with
zero means and finite variances and independent of the Gaussian white

noise {et}. Then regardless of the magnitude of cy

r

1 os~l{ate 1
5 €os (1_+as), a8 € R, Jal <1, [p] <1
1 %cos'l(20 cos e), a=§=pem, Ipl <1, O0<o<em
1.9.m 5Dy (X) ={ 1+p
Nerco
1 -1{ a VR 1
FCOS (————— » o, € RY, |(1| v ]f".l > 1
' la v R
.0_, u=§=ei0’ O<o0<qy
L ki
(1 -lja+8 1
2 o S [4 ~ J >
TTCOS (1+afi), a,pB R*, lul 1, |r] )|
1 l<w54(&Lg§%%. a=f=pe’, (o] > 1, 0zo<n
Lim 50,00 = m 1+p
N0 1 -1 anag 1
= CO0S (._.__._._._), “af)’ € R s I“' A 'nl i 1
m la A £
] %, a=f=e'l, 0<0<m.

i -

T




24

Remark. For the case a =B =pe ", p>1, 8 # 0, the limit

EX. X
Vim =tttk (3.8)

need not exist for every k. To see this put § = = 0. Then

2 .2 ) 1_p2(t+1) l_p2(t+1)ei2(t+1)e i26 2
EX{ = 20°Re§ ——> 7 " RYE o,
p sin @ 1-p l-pe
and
L k#2 1 (120200 g o) 2t e o406 2
EX Xty =207 Re{——— 7€ - > 776 e O -
p-sin" 6 1-9¢ 1-p°e i
i2(t+1)0

The problem lies in the fact that e does not have a unique limit
as t + o and that this term cannot be eliminated in the corresponding

ratios. More precisely, let

a-= be'® = 1L

2 AT

Then a > b. Take a subsequence {ts} of {1,2,...} such that

it 8
lime > =¢'Y, u ¢ (0,2m).
S-+o0
Then
EX, X
1 tot ok a cos kO + b cos{u+d0+k0+a)
im = .
tow /%Xi EXE " {[a +b cos(u+4b+n)}fa +b cos(u+40+2k6+2)]}1"2
s s

But this limit depends on u and so 3.8 need not exist for a given k,6.
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:
4. The case of unit roots
h ' The most interesting case occurs when the equation
(1 -0x){1-Bx) = 0 has two unit roots e'® and e'lo, 0<o<n. In this
case (3.1) reduces to
* Xt = 2 cos © Xt-l - Xt-2 t e, 0<6<m. (4.1)
By Theorem 3.1 then the ZCR DN(Y)/N converges to 0/m as N + o,
Figure 4.1 shows a typical realization of (4.1) for & = n/6. The process

oscillates as asinusoid except that the amplitude tends to increase with t.
Because of the sinusoidal oscillation the rate of convergence of the ZCR

is very fast and is essentially identical to that observed in a pure
sinusoid. In other words, the ZCR of (4.1) is the same whether 05 is
large, small or even 0. This is illustrated in Table 4.2. The fast rate
of convergence is displayed in Figure 4.2 and Tables 4.1, 4.2. Conversely,
a fast rate of convergence of the ZCR is a very good indication of the

presence of unit roots.

2(1)

3

Z(1)=2 cos(w/6)x Z(1-1)~ Z(t-2) +U(t)

50

Z(t) O

LD s NN mag T TTTrTT

Figure 4.1. Rea]ization.of a second order autoregressive process with
two unit roots e’"/s’ e""/6, and 05 = 1.
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| 08 _.%(N)/N
Z(1) #2 cos(w/4)Z(t-1)-2Z(1-2)+U(1)
L 06 -
04}
g WV o
oz}
Qo | A 1 I t ﬁ
0 . 200 400 600 800 1000
DINV/N o
08 T 2 (1)« 2 cos (w/3) ZU=1) - Z(t-2)+U(1) B
wl
04}
o~
02}
% 0.0 § 1 — . —d 'i
0 200 400 600 800 1000

g 2

Figure 4.2. 7CR paths of AR(2), o2 = 1, with unit roots at e*'™/4
s
and e‘”/3. The convergence is towards 1/4 and 1/3 respectively.

(D(N)/N = Dy (X¥)/N)

AR .

it




27 :*
8/n 1.00000 0.95490 0.50000 0.08134 0.00000

+ 20000 80000 «40000 10000 1000
99804 195490 « 49408 LORDIG L00196
(99901 L5545 49302 L8119 00099
L 99934 25497 + 49848 081448 00084
29950 fFEH22 cAP200 08109 LO0000
e 99960 + 95498 49920 08147 « 00040
L R9967 fP5G1LY AP 34 LORTA40 000353
29972 954969 49943 L08148 L00028
99975 254846 s ADOH0 LOB155 00025
99978 195499 cAPOT6 L08137 D020
s 99980 + 95489 +A9R80 LORLA4 SO0N20
LR 5499 cAVPL4 08149 L0018
. P9983 1 9G5491 499467 08136 00017
29985 cPH45Y s APRLQ L08141 D001 E
2P0 L5492 L AR 08146 00014
~GEOR7 «P5499 yARQT73 LORL3G 0013
. 99908 L P5493 CAGOTN LOR140 00012
L9048 « 25409 QPO A 08143 000172
LPP9H9 e P54 4 40078 08135 00011
P 2998Y + 95489 «APPTOQ LOR13R9 <0001
e PC990 e 95495 499030 08147 00010

Absolute

Error 0.00010 0. 00005 0.00010 0.00007 0.00010

N =10010

Table 4.1. Convergence to 8/n of DN(Y)/N, N=10, 510, 1010, 1510,

2010, ... , 10010, from the model (4.1) with US = 1. The rate of con-

vergence is fast.
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8/n = 0.15915 8/n = 0.79577
2 _ 2 2 2 _ 2 _ 10612
N o, 0 o, (8976) o, 0 o, = (7-107)
10 0.20000 0.20000 0.80000 0.70000
510 0.15882 0.16078 0.79608 0.79412
1010 0.15941 0.15941 0.79505 0.79505
1510 0.15960 0.15894 0.79536 0.79536
2010 0.15920 0.15920 0.79552 0.79552
2510 0.15936 0.15896 0.79562 0.79562
3010 0.15914 0. 15880 0.79568 0.79568
3510 0.15926 0.15897 0.79573 0.79573
4010 0.15910 0.15910 0.74576 0.79551
4510 0.15920 0.15898 0.79579 0.79557
5010 0.15928 0.15908 0.79581 0.79561
Absolute
Error 0.00013 0.00007 0.00003 0.00017
N = 5010 .
Initial - - = =
values X1 =5000. X2 = -1256. X1 33. X2 55.
2

Table 4.2. Convergence to 8/n% of DN(Y)/N from the model (4.1) with o,

very large or 0. The convergence is essentially independent of 05.

—  _ \ER,
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The last remark that unit roots correspond to a fast rate of ZCR
eie

convergence can be illustrated by the model (3.1) with o =8 = o

O<p<l. In this case {3.1) becomes

_ 2
Xy = 20 cos 8X ) - oKX 5 e, (4.2)

where 0< p <1 means that (4.2) has a stationary solution while p =1

corresponds to two unit roots and (4.2) does not have a stationary solu-

tion. By Theorem 3.1

t
= |

DN(Y)/N + 5

cos-l(z.o_c_o_s_g ) (4.3)
1 +p

10,210, 410,610, ... , 5010,

Table 4.3 gives the ZCR for N
p=0,0.5,1, and 6 = 2.5, From the table it is evident that the

rate corresponding to p = 1 1is faster than in the other two cases.
(Note that p = 0 means that X; is white noise.) Again, as in the
first order case, the ZCR path corresponding to the "nonstationary"
case is much smoother than the paths produced by the "stationary"

series.

_al . ml Lt

n




ZCR
+ 30000

e H2BHT
151463
+51311
«S504¢4
49109
+ 48843
148794
49565
« 48457
sAB70A
ARG AT
4880
LA8790
+48671
486972
P AGHT 2
LA9584
+ 494023
149377
. 49?1 -{)
fAP0DTX

Table 4.3. Convergence of D (¥)/N, N =
from 4.2 with o~ = 1,

w given in 4.3.

8 -2.5
0.50000

ERROR

-~y 20000
L028507
J21AB3
Q1311
. 00494

-.00891

~. 01157

-, 01206

— 00415

<, 01547

~ 01294

= LT

SRR RLK ¥y

~.01210

-, 01308

-, 004146

~+Q0T77

-, Q04623

-.00784

=, QOWOT

2
€

p = 0.5
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6 =2.5

w = 0.72144

ZCR

7000
L7428
STRARE
AL
(TRYED
73940
V73203
L7347%
LTBAL
LPEADY
(73284
(73077
V73300
L7ELEG

72589

S FRIGE
AL T A
72428
: 7R0D20

1

= 10.185, X

ERROR

U R
02144
COD 29T
LOOPT
000318
L1818
L01079
01331
L0127
01261
(01139
VRS
L0112
01038
L GOR4E
00646
00225
JOUFLY
(0029 3
GOATY
L0025
002755
00214
(00111
L0046
0G0% ]

2

= -5.114.

p=1,

8 =2.5

w = 0.79577

ZCR

 FOU00
L TR0O4Y
79068
SIOUOY
TG
R
IRLR7
YT
TS
CIVH1E
TR602
LT9H9R
pach:
79579
LIS
 IPGEE
L 79564
(7940
79584
L 79520
79576
C79GTR
N ITA
R AEY
L7954
vl

.

10, 210,410,610,

ERROR

RV AN
- OO0 30
- 00309
QOO AG
S 000
L0006
L0009
00003
L0012
L0003
00025
CODN0LE
L, 00008
L0050
= e Q0005
oo QOO0OY
DO 4
- 00017
L0007
+O0003
- 000 L
= D000
- QO0OH
Q01T
SOQQ0Y
A TeTe S

... , 5010,

ERROR = ZCR - w,

The ERROR column indicates the rate of convergence.
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!
’ 4.1. Multiple unit roots and ZCR of differenced series
h As noted in the introduction, at present it is not entirely clear 3
how to extend our results to the case of multiple roots. However, we l
conjecture that the ZCR of the filtered series may determine these roots.
h An indication of this fact is now outlined. ]
; Let v =1-B be the difference operator and consider the ZCR of ﬁ
{kat}. Suppose the unit roots are recorded as eIGI, elez,..., where

0 < 61 < 92 < ... < m. Then under some conditions, as k -+ ~, the ZCR i

for large N converges to the greatest ej/n. We can illustrate this

idea by examples. Figure 4.3 displays the ZCR paths obtained by re-

peated differencing. The lowest path corresponds to no differencing,
the one above it corresponds to the ..st difference and so on. This
monotonicity is due to repeated differencing which acts as sequential

highpass filtering. In the two cases in Figure 4.3 the roots are

ei1", eiI"/3 and et10.85n’ eiio‘ls", respectively, and the processes

are AR(4). In both cases convergence to the greatest ej/n occurs as

k > o, We shall pursue this line of thought elsewhere.

LA L, gk - j
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RATE PROCESSES FOR NONSTATIONARY AR(4)
F_z(N)/N 62w, 6p5%/3

(a) 08 I~

L N

foYe) 1 L n U
0 200 400 600 800 1000

Lot 2NN
' RATE PROCESSES FOR NONSTATIONARY AR(4)

685 , 6;=/5»

Figure 4.3. ZCR paths from differenced AR(4), k = 0,1,...,7, with
four unit roots converging to the largest ej/n. In (a) all the paths
are the same. In (b) the convergence of the paths tc a straight line

is fast. (D(N)/N = DN(X)/N)
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